An Efficient Spam Mail Detection by Counter Technique

نویسندگان

  • Raheleh Kholghi
  • Soheil Behnam Roudsari
چکیده

Spam mails are unwanted mails sent to large number of users. Spam mails not only consume the network resources, but cause security threats as well. This paper proposes an efficient technique to detect, and to prevent spam mail in the sender side rather than the receiver side. This technique is based on a counter set on the sender server. When a mail is transmitted to the server, the mail server checks the number of the recipients based on its counter policy. The counter policy performed by the mail server is based on some pre-defined criteria. When the number of recipients exceeds the counter policy, the mail server discontinues the rest of the process, and sends a failure mail to sender of the mail; otherwise the mail is transmitted through the network. By using this technique, the usage of network resources such as bandwidth, and memory is preserved. The simulation results in real network show that when the counter is set on the sender side, the time required for spam mail detection is 100 times faster than the time the counter is set on the receiver side, and the network resources are preserved largely compared with other anti-spam mail techniques in the receiver side. Keywords— Anti-spam, Mail server, Sender side, Spam mail

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization

Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...

متن کامل

A New Hybrid Approach of K-Nearest Neighbors Algorithm with Particle Swarm Optimization for E-Mail Spam Detection

Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters therefore new filters to de...

متن کامل

An Improved AIS Based E-mail Classification Technique for Spam Detection

An improved e-mail classification method based on Artificial Immune System is proposed in this paper to develop an immune based system by using the immune learning, immune memory in solving complex problems in spam detection. An optimized technique for e-mail classification is accomplished by distinguishing the characteristics of spam and non-spam that is been acquired from trained data set. Th...

متن کامل

Optimized near Duplicate Matching scheme for E-mail Spam Detection

Today the major problem that the people are facing is spam mails or e-mail spam. In recent years there are so many schemes are developed to detect the spam emails. Here the primary idea of the similarity matching scheme for spam detection is to maintain a known spam database, formed by users feedback, to block the subsequent near-duplicate spam’s. We propose a novel e-mail abstraction scheme, w...

متن کامل

Improved near Duplicate Matching Scheme for E-mail Spam Detection

Today the major problem that the people are facing is spam mails or e-mail spam. In recent years there are so many schemes are developed to detect the spam emails. Here the primary idea of the similarity matching scheme for spam detection is to maintain a known spam database, formed by user’s feedback, to block the subsequent near-duplicate spam’s. We propose a novel e-mail abstraction scheme, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012